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Abstract

In this study we have proposed an accurate and simple method to evaluate the Lyapunov spectrum. The method is suitable for any
discretization method that finally expresses a governing equation system in the form of an ordinary differential equation system. The
method was applied to evaluate up to the second largest Lyapunov exponents for natural convection in a rectangular cavity with heated
and cooled side walls. The main results are as follows: (1) the largest and second largest Lyapunov exponents can be evaluated without
any parameters that affects the exponents. (2) The second largest Lyapunov exponent makes it possible to classify quantitatively thermal
convection fields into five regimes against the Rayleigh number and to clarify the transition route from steady state to chaos by identi-
fying the first and second Hopf bifurcations. (3) The fluctuation in thermal convection fields just over the critical Rayleigh number at
which Hopf bifurcation occurs can be quantitatively explained by using normalized Lyapunov vectors, associated with the computation
of the Lyapunov exponents, just under the critical point.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Transition to natural convection in a vertical cavity with
heated and cooled vertical side walls has been the subject of
many research papers. In most of these studies transitions
such as from unicellular flow to multicellular flow were
viewed as boundary-value problems and were intended to
be explained using bifurcation diagrams [1] of several
(steady) solutions under the given boundary condition
whose stability was determined by linear [2] or weak non-
linear analyses [3]. Once the flows lose their stability and
become unsteady flows, however, the same analyses are
not applicable to the change of flow regime in unsteady
0017-9310/$ - see front matter � 2005 Elsevier Ltd. All rights reserved.
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flows including chaos or turbulent flows except periodic
ones [4], because these flows have strong nonlinearity with
regard to stretching and folding action in addition to their
unsteadiness.

Because of the above-mentioned reasons there is very lit-
tle work available on the unsteady characteristics [5,6],
including chaotic ones [7,8], of thermal convection fields.
Ishida et al. [9] experimentally examined thermal convec-
tion fields in a tall cavity and found that significant chaotic
temperature fluctuation exists in the region of secondary
cellular flow. Ishida et al. [10] also quantitatively classified
the unsteady region of a wall plume adjacent to a vertical
side wall with an embedded line heat source into periodic
and chaotic regions and, consequently, showed four flow
regimes in the flow direction. Similar relationships between
flow regimes and their chaotic properties were determined
numerically in a vibrated thermal convection field in a
square enclosure [11].
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Nomenclature

a thermal diffusivity [m2/s]
CC convergence criterion
(C) chaotic flow regime
cf complex form of Fourier coefficient of vorticity
cf02

complex form of Fourier coefficient of vorticity
component of the second Lyapunov vector

D dimension
f frequency
Gr Grashof’s number (=gbHL3/m2)
g acceleration due to gravity [m/s2]
J Jacobian
k thermal conductivity [J/(ms �C)], local kinetic

energy
L width of cavity, representative length [m]
Nu surface-averaged Nusselt’s number
NP number of definition points
(P) periodic flow regime
(p1)–(p5) reference point No. 1–5, defined in Table 3
Q local enstrophy
(QP) quasi-periodic flow regime
Pr Prandtl’s number (=m/a = 0.71)
Ra Rayleigh’s number (=PrGr)
(S) steady flow regime
T dimensioned temperature [�C]
TDt Dt-evolution operator
t dimensionless time
u x velocity component
v y velocity component
X dimensioned X coordinate [m]
x dimensionless X coordinate

Y dimensioned Y coordinate [m]
y dimensionless Y coordinate

Greek symbols

a aspect ratio
b thermal expansion coefficient [1/�C]
v eigenvalue
Dt time step
Dx spatial increment in the x direction
Dy spatial increment in the y direction
/ general quantity
u dimensionless stream function
h dimensionless temperature (=(T � Tc)/H)
H representative temperature difference

(=Th � Tc) [�C]
e, e2 proportional constant
ki ith largest Lyapunov exponent
m kinetic viscosity [m2/s]
s period, representative time scale (�a1/2PrRa�1/2)
f dimensionless vorticity
f01 dimensionless vorticity component of the first

Lyapunov vector

Subscripts

amp amplitude
c cooled side wall, critical value
h heated side wall
s steady state
h temperature
0 zeroth or initial value

5036 H. Ishida et al. / International Journal of Heat and Mass Transfer 49 (2006) 5035–5048
In these analyses the largest Lyapunov exponent, which
is the indicator of the sensitive dependence of initial
conditions, was utilized to quantify the chaotic characteris-
tics. However the computation of the indicator, proposed
by Wolf et al. [12], is based on the embedding technique
[13] and involves the physically relevant determination of
the values of such parameters as embedding dimension,
delay time, etc. on which the indicator depends. The reso-
lution of the problem is impossible for the case of experi-
mental data analyses, whereas it is possible for numerical
analyses in which entire flow fields are solved. To our
knowledge, Bruneau and Saad [14] were the first to obtain
the largest Lyapunov exponent for a steady thermal con-
vection field in a rectangular cavity with aspect ratio of 8
by using the formulation of a linear analysis without the
embedding technique, and obtained the critical Rayleigh
number for the flow to be periodic.

In this study an accurate method to compute the Lyapu-
nov spectrum of thermal convection fields, which general-
izes the concept of the largest Lyapunov exponent, is
proposed by the formulation of linear analyses. The method
does not involve the determination mentioned above and
makes it possible to obtain the Lyapunov spectrum by, in
principle, the same method as for any numerical solution
including steady, periodic and chaotic ones. The spectrum
not only provides the quantitative measure for unsteady
solutions but also has an important property relating
to the Kaplan–Yorke dimension [15] and Kolmogorov
entropy (Pesin’s identity [16]), and it characterizes nonequi-
librium dynamics. In this study the method was applied to
compute up to the second largest Lyapunov exponent and
to obtain various critical Rayleigh numbers. Consequently
the transition from steady to unsteady flow was quantita-
tively analyzed and the transition route to chaos was clari-
fied. Moreover, the fluctuations of physical quantities over
the critical number are shown to be explained by the phys-
ical quantities associated with the Lyapunov spectrum
under the critical number. The proposed computational
method for the Lyapunov spectrum just requires several
times the amount of computational time and storage over
what is needed for the conventional computation of flow
field, and is very useful for many applications.
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2. Methods and definitions

2.1. Physical model and governing equations

The physical model and the coordinate definition of this
study are shown in Fig. 1. The thermal convection field in
an enclosure was assumed to be uniform in the direction
normal to the figure, and a two-dimensional coordinate
system is fixed on the enclosure. Y coordinate is defined
as the inverse direction of gravity along the left hand side
wall and X coordinate is defined as the direction normal
to the Y-axis along the bottom wall, as shown in Fig. 1.
The origin is at the lowest left corner of the enclosure.
The width of the enclosure is L and the height is L
times the aspect ratio a. The left hand side wall shown in
Fig. 1 is heated to Th and the right hand side wall is cooled
to Tc. The top and bottom walls are adiabatic. The velocity
component on the wall surface is 0. Initially the fluid in the
enclosure is stationary and is at temperature Tc.

On the assumption that the physical properties of the
fluid are almost constant, the Boussinesq approximation
can be applied to the governing equations. The normalized
basic equations are given as follows:

u ¼ ou
oy
; v ¼ � ou

ox
; r2u ¼ �f; ð1Þ

of
ot
þ oðufÞ

ox
þ oðvfÞ

oy
¼ Gr

oh
ox
þ Df; ð2Þ

oh
ot
þ oðuhÞ

ox
þ oðvhÞ

oy
¼ 1

Pr
Dh; ð3Þ

where u and f are the dimensionless stream function and
vorticity, respectively. They were normalized by the repre-
sentative length L, representative temperature difference H
(=Th � Tc) and kinetic viscosity m. Gr and Pr are the Gras-
hof number and the Prandtl number based on L and H,
respectively. In the following, Pr was held constant at
Fig. 1. Physical model and coordinate definition.
0.71 and the Rayleigh number Ra (=GrPr) was varied be-
tween 0.1 and 107. The aspect ratio a was basically held
constant at 5 except in the case of comparison with a
benchmark solution, described in Section 3.

These basic equations were discretized by a finite volume
method. The QUICK scheme and the second order central
difference scheme were applied to convection terms and dif-
fusion terms, respectively. For time evolution the explicit
method was used. The spatial increments Dx and Dy were
1/80 and 1/40, respectively. The time step Dt decreases
from 10�5 to 10�6 with increasing Ra so that the stability
condition of the above-mentioned difference scheme would
be satisfied. This Dt (<10�5) is too small only for the satis-
faction of the condition in some cases of small Ra. How-
ever it is responsible for sufficient accuracy of computed
Lyapunov exponents as mentioned below. The conver-
gence criterion for the Poisson equation (1) was that the
maximum relative residual of u was less than CC =
1.0 � 10�7. These computations, including the evaluation
of Lyapunov exponents mentioned below, were performed
in double precision.

In general the computed physical quantities are time-
dependent. And so the statistically steady state in which
the fluctuation of each physical quantity follows a steady
distribution was defined as a ‘‘quasi-steady state”, and
the characteristics of thermal convection fields were exam-
ined in such a state.

2.2. The Lyapunov spectrum

In experiments, we usually have the time-variation data
of limited variables at limited points. In this respect the
conventional method based on the embedding technique,
proposed by Takens [13], is useful to compute the largest
Lyapunov exponent [12] or Lyapunov spectrums [17] from
such experimental data. However the technique involves
the determination of optimal values of such parameters
as embedding dimension, delay time, evolution time, etc.,
and the computed exponents tend to fluctuate around these
optimal values [9–11]. Moreover the distance from a refer-
ence trajectory to a neighboring (nearby) one, required to
evaluate the stretching rate, should be essentially infinites-
imal and, therefore, the evaluation from non-zero distance
in the technique inevitably involves numerical errors. In
this study we present an accurate and simple method to
evaluate the exponents for the thermal convection fields
suitable for numerical computations. This is based on the
standard method that has been applied to ordinary differ-
ential equation systems [18–21].

Now let us consider an ordinary differential equation
system. Assuming the governing equations of the system
can be expressed as d//dt = v(/) (/ = (/1,/2, . . . ,/D); D:
dimension), we have the governing equations of infinitesi-
mal perturbation vector (tangent vector) /0 as follows:

d/0

dt
¼ JðtÞ/0; J ij �

ovi

o/j

: ð4Þ
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This is an ordinary linear differential equation system and
J(t), the Jacobian, is evaluated along a referential trajec-
tory. From Eq. (4) we can obtain a fundamental matrix
K and its eigenvalues vi(t) (i = 1,2, . . . ,D). Then the Lyapu-
nov exponents can be expressed as follows [22]:

ki ¼ lim
t!1

1

t
ln viðtÞj j: ð5Þ

Providing k1 P k2 P � � �P kD, and where the largest
Lyapunov exponent k1 corresponds to: (1) the real part
of the largest eigenvalue obtained from the linear stability
analysis for a steady solution v(/) = 0 (k1 < 0), (2) the real
part of the largest Floquet exponent [23] for a periodic
solution /(t + T) = /(t) (k1 = 0), and (3) the so-called larg-
est Lyapunov exponent in the field of chaotic theory. The
largest Lyapunov exponent is the indicator of the sensitive
dependence of initial conditions, and dynamical systems
with k1 > 0 are widely accepted and defined to be chaotic.
Moreover, by computing k2, we can distinguish two torus
(k1 = k2 = 0) from stable limit cycle (k1 = 0 > k2). There-
fore Lyapunov exponents can provide unified measures
to determine the condition of systems, not limited to cha-
otic ones. The above discussion is based on the fact that
the real parts of the eigenvalues of the stability matrix
equal the corresponding Lyapunov exponents [20].

Applying the power method [24], we can obtain the larg-
est Lyapunov exponent for almost all initial conditions of
/01 as follows:

k1 ¼ lim
t!1

1

t
ln /01ðtÞ
�� ��: ð6Þ

In this study /01 is referred to as the first Lyapunov vector
[21].

The second largest Lyapunov exponent is similarly com-
puted by using the Gram–Schmidt orthogonalization tech-
nique (GSO) as follows [12,19–21]:

k2 ¼ lim
Dt!0

lim
N!1

1

NDt
ln j/̂02ðNÞj

� �
; ð7Þ

such that

/̂01ðiþ 1Þ ¼ T Dt/̂01ðiÞ;
/̂02ðiþ 1Þ ¼ T Dt/̂02ðiÞ � ðT Dt/̂02ðiÞ/̂01ðiþ 1ÞÞ

� /̂01ðiþ 1Þ=j/̂01ðiþ 1Þj2;

where

/̂01ðiÞ�/01ðt0þ iDtÞ; /̂02ðiÞ�/02ðt0þ iDtÞ; /01ðt0Þ �/02ðt0Þ¼ 0;

and TDt is Dt-evolution operator, which is given by the inte-
gration of Eq. (4). Similarly /02 is referred to as the second
Lyapunov vector [21]. In Eq. (7) the limit on N should be
performed before we take the limit on Dt. Actually the limit
on Dt is not necessary when Dt is sufficiently small. In this
study the limit could be omitted because Dt is, in conse-
quence, sufficiently smaller than 1/jk1j or 1/jk2j. The third
or higher Lyapunov exponents are similarly obtained by
using the GSO algorithm. GSO algorithm is utilized so that
all of the Lyapunov vectors do not converge to the most
amplified vector, i.e., the first Lyapunov vector. Thus we
have the full spectrum of Lyapunov exponents. It should
be noted that such an evaluation (Eqs. (6) and (7)) does
not involve the determination or numerical errors men-
tioned above.

When we use the finite volume method to solve the gov-
erning equations (1)–(3), their discretized equations can be
regarded as an ordinary differential equation system and,
therefore, the same method can be applied to evaluate
the Lyapunov exponents. In this case the vector / can be
expressed by / = (f1,f2, . . . ,fNP,h1,h2, . . . ,hNP), where NP
is the number of definition points, because u, v and u are
considered the functions of f and h. If any physical quan-
tity / of thermal convection fields is divided into a referen-
tial value /(0) and its infinitesimal perturbation (tangent
vector) /0, such a perturbation is governed by the following
linearized equations:

u0 ¼ ou0

oy
; v0 ¼ � ou0

ox
; r2u0 ¼ �f0; ð8Þ

of0

ot
þ oðuð0Þf0Þ

ox
þ oðvð0Þf0Þ

oy
þ oðu0fð0ÞÞ

ox
þ oðv0fð0ÞÞ

oy

¼ Gr
oh0

ox
þ Df0; ð9Þ

oh0

ot
þ oðuð0Þh0Þ

ox
þ oðvð0Þh0Þ

oy
þ oðu0hð0ÞÞ

ox
þ oðv0hð0ÞÞ

oy

¼ 1

Pr
Dh0: ð10Þ

The boundary condition of a perturbation /0 is identical
with its referential value /(0) except h0h ¼ h0c ¼ 0. In discret-
izing equations (8)–(10), we have the operator TDt of a tan-
gent vector /0 ¼ ðf01; f

0
2; . . . ; f0NP; h

0
1; h

0
2; . . . ; h0NPÞ mentioned

above. It is worthwhile noting that the discretization of
the 4th and 5th term on the left hand side of Eqs. (9) and
(10) should be performed by the upstream interpolation
referring to the flow direction not of u0 and v0 but of u(0)

and v(0). Because the governing equation of the tangent vec-
tor should be Eq. (4); the discretization of Eqs. (1)–(3) does
not refer to u0 and v0. The referential trajectory is taken to
be the solution of Eqs. (1)–(3) under the given initial and
boundary conditions, and the Jacobian is evaluated by
substituting the solution into u(0), v(0), h(0), f(0) of Eqs.
(8)–(10). These equations are simultaneously solved and
evolved until the fluctuation of the Lyapunov exponents
is sufficiently confined. The extra computation to obtain
the first k Lyapunov exponents requires only k times the
amount of computational time and storage needed for solv-
ing thermal convection fields (Eqs. (1)–(3)), and is accept-
able for many practical applications.

When we numerically solve a partial differential equation
system the basic equations are often approximated by an
ordinary differential equation system whether or not the
finite difference method is used. Therefore, the proposed
computational method of Lyapunov exponents can be
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applied to many numerical solvers of many partial differen-
tial equation systems. The present method should be
verified by examining the consistency of the computed
quantities with the real phenomena as discussed in Section
4.

3. Accuracy assessment

First, the unsteady solution of Eqs. (1)–(3) is compared
with a benchmark solution for the case of aspect ratio
a = 8, Pr = 0.71 and Ra = 3.4 � 105 [25]. The discretiza-
tion method, spatial increments (Dx,Dy), time step (Dt),
and convergence criterion are identical with those
described in Section 2.1. Results are shown in Tables 1
and 2.

In these tables �/, ~/ and /amp denote the time-mean
value of /, the square root of the volume-mean value of
/, and the amplitude of /, respectively. sh denotes the per-
iod of the vibration of h, Nu the averaged Nusselt number
on the left hand side wall, k the local kinetic energy (u � u)/
2, and Q the local enstrophy f2/2. These values were eval-
uated at a referential point (x,y) = (0.181,7.370) using lin-
ear interpolation of the values near the referential point
except the volume-mean values. The so-called peak-to-val-
ley amplitude, the difference between the maximum and
minimum values, was adopted to evaluate amplitudes.

In Table 1 ‘‘Le Quéré” indicates the values of a bench-
mark solution of Le Quéré computed by a pseudo-spectral
method. The fluctuation of computed values by some dis-
cretization techniques, including the finite difference
method, the finite volume method and the finite element
method [25], are shown in ‘‘Minimum”, ‘‘Maximum”,
‘‘Mean value”, and ‘‘Standard deviation” rows in Tables
1 and 2. The computed values for this study are shown in
the ‘‘Ishida et al.” row. And the relative differences between
the present results and the benchmark results (Table 1) or
Table 2
Comparison of the present numerical result including volume-averaged prope

�w wamp
�f f

Minimum �7.450e�2 5.740e�3 �2.4498 0
Maximum �5.955e�2 1.160e�2 �1.9914 1
Mean value �7.249e�2 7.864e�3 �2.2845 1
Standard deviation 3.412e�3 1.675e�3 0.1439 0
Ishida et al. �7.397e�2 7.817e�3 �2.3280 1
Difference (%) 2.042 0.598 1.904 1

Table 1
Comparison of the present numerical result with other ones including a bench

�u uamp h

Le Quéré 0.056356 0.054828 0.265480
Minimum 0.054000 0.000480 0.244140
Maximum 0.065370 0.095000 0.275000
Mean value 0.058565 0.061093 0.265301
Standard deviation 0.002783 0.016369 0.043795
Ishida et al. 0.059032 0.061006 0.265170
Difference (%) 4.748 11.269 0.117
the above-mentioned mean results (Table 2) are shown in
the ‘‘Difference” row.

As shown in Table 1 the present study shows good
agreement with the benchmark solution by Le Quéré.
Though the difference of the amplitudes of u, h, Nu is rela-
tively large, the difference of the amplitude from the mean
value is within the standard deviation computed by some
discretization methods, and we can conclude that the
results of the present study are accurate enough. For the
values shown in Table 2, we cannot compare the present
results with the benchmark solution. However the differ-
ence of the present study from the mean value is within
the standard deviation and such results are good, too.

Moreover we computed Nu by using the discretization
method described in Section 2.1 for the case of a = 5,
Pr = 0.71 and Ra = 1.0 � 107 and found that it agrees well
with the value evaluated by the correlation equations pro-
posed by Seki et al. [26] and Churchill and Ozoe [27].
Therefore we can conclude that the spatial increment of
the present study is sufficiently small. From these results
the present computational methods are ascertained to be
accurate enough to analyze the unsteady characteristics
of the thermal convection fields for Ra < 107 and, hereaf-
ter, the same computational method was applied for the
case of a = 5.
4. Results and discussion

4.1. Unsteady characteristics and flow regimes

In this study several reference points were set in the cav-
ity and these points are summarized in Table 3. The ampli-
tude of the vorticity at a reference point (p1) versus Ra is
shown in Fig. 2. The figure shows that the vorticity begins
to fluctuate at Ra = 7.3 � 105, a critical Rayleigh’s number
rties with other results by using some discretization methods [25]

amp
�~k ð~kÞamp

�~Q ð~QÞamp

.9056 0.2373 3.100e�5 2.7020 3.000e�3

.9092 0.2425 7.200e�5 3.0387 4.640e�3

.2325 0.2397 4.093e�5 2.9998 3.488e�3

.3036 9.979e�4 1.216e�5 0.0774 4.266e�4

.2129 0.2396 3.568e�5 3.0062 3.463e�3

.589 0.0417 12.832 0.213 0.717

mark solution using a pseudo-spectral method (Le Quéré) [25]

hamp Nu Nuamp sh

0.042740 4.57946 0.007100 3.41150
0.000260 4.56700 0.000050 3.34640
0.072800 9.14500 0.011600 5.05000
0.046734 4.73896 0.007692 3.48314
0.012127 0.83310 0.001982 0.29273
0.047639 4.60207 0.008400 3.39994

11.462 0.494 18.310 0.339



Table 3
Reference points of this study

Reference point p1 p2 p3 p4 p5

x-coordinate 0.0125 0.025 0.0625 0.5 0.75
y-coordinate 4 0.05 3.75 4.95 1.25

Fig. 2. Relative amplitude of vorticity at reference point (p1). The
amplitude is described as the peak-to-valley amplitude of vorticity divided
by its time-mean value.
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denoted by Rac1, and after that the thermal fields enter an
unsteady state.

Strictly speaking, the computed vorticity shows unstead-
iness even when Ra < Rac1. Such a fluctuation is a false or
numerical one that is caused by nonzero CC when round-
ing error is sufficiently small. Fig. 3 shows the variation
of the amplitudes of the surface-averaged Nusselt number
on the high-temperature side wall Nu, and h and f at the
point (p1) as CC is changed. As shown in Fig. 3(b), the
amplitudes saturate as CC goes to zero for the case of
Ra > Rac1 indicating that the fluctuation makes physical
sense. In contrast, for the case of Ra < Rac1, shown in
Fig. 3(a), the amplitude goes to zero in a power-law man-
ner with decreasing CC and the fluctuation is determined to
Fig. 3. Variation of some amplitudes versus convergence criterion (CC): (a) R

averaged Nusselt number on the high-temperature side wall. h and f are respec
be only numerical. This false fluctuation affects the time-
variation of the first Lyapunov vector /01 as described in
Section 4.3.

The time traces of the vorticity for Ra > Rac1 at the
point (p1) and their power spectrums are shown in Figs.
4 and 5, respectively. As shown in Figs. 4(a) and 5(a) the
fluctuation of the vorticity is periodic and indicates that
the above-mentioned unsteadiness is caused by the first
Hopf bifurcation at Ra = Rac1. For Rac1 6 Ra < Rac2 �
1.27 � 106 the fluctuation has a fundamental frequency f1

along with its harmonics.
For Ra > Rac2 the fluctuation of the vorticity has the

components of two fundamental frequencies f1 and f2, their
(sub-)harmonics and their superpositions, and becomes
quasi-periodic as shown in Fig. 5(b)–(d). For the case of
Ra = 1.72 � 106 and 1.73 � 106 this manner of the super-
position is shown precisely in Fig. 6. When Ra is large
enough, the spectrum of the fluctuation is continuous and
the fluctuation is qualitatively chaotic (Fig. 5(e)). This indi-
cates that the second Hopf bifurcation occurs at Ra = Rac2

and that the transition to chaos follows the Ruelle–Takens
scenario. Now it should be noted that the state of Ra =
1.73 � 106 cannot be distinguished from that of 1.72 �
106 by power spectrums Fig. 5(c) and (d). In contrast, these
states can be clearly and quantitatively distinguished by
using the largest Lyapunov exponents.

These results suggest that the thermal convection fields
can be classified into four regimes: (a) steady state (S),
(b) periodic state (P), (c) quasi-periodic state (QP), and
(d) chaotic state (C). However, from the above-described
qualitative discussion, the critical Rayleigh number Rac3

between (QP) and (C) cannot be determined and the fluctu-
ation observed in (P) and (QP) cannot be explained or pre-
dicted from the unsteady physical quantities in (S) and (P),
respectively. This is resolved by using Lyapunov exponents
and normalized Lyapunov vectors as discussed below.
a = 5.62 � 105; (b) Ra = 7.50 � 105. Nu is the amplitude of the surface-
tively amplitudes of temperature and vorticity at the reference point (p1).



Fig. 4. Time-variation of vorticity at the point (p1) for the same time-range of 0.05: (a) Ra = 1.00 � 106; (b) Ra = 1.43 � 106; (c) Ra = 1.72 � 106;
(d) Ra = 1.73 � 106; (e) Ra = 3.16 � 106.

Fig. 5. Power spectrums of vorticity at the point (p1): (a) Ra = 1.00 � 106; (b) Ra = 1.43 � 106; (c) Ra = 1.72 � 106; (d) Ra = 1.73 � 106; (e)
Ra = 3.16 � 106.

H. Ishida et al. / International Journal of Heat and Mass Transfer 49 (2006) 5035–5048 5041
4.2. Lyapunov exponents and flow regimes

The largest and second largest Lyapunov exponents ver-
sus Ra are shown in Fig. 7. As shown in Fig. 7(c) the largest
Lyapunov exponent k1 lies in the range of ±0.5 for
Rac1 = 7.3 � 105

6 Ra 6 Rac3 � 1.72 � 106 and the second
largest Lyapunov exponent k2 is also included in ±0.5 for
Rac2 = 1.27 � 106

6 Ra 6 Rac3. These absolute values are
relatively small when compared with the exponents outside
the above-mentioned range of Ra. Whether or not the
Lyapunov exponents are numerically zero should be
decided from the exponents multiplied by the representa-
tive time scale for each Ra. In this study we use the follow-
ing time scale s for this purpose [28]:

s / a1=2PrRa�1=2: ð11Þ

From the change in fundamental frequency f1 against Ra

the proportionality constant of s can be determined to be
1.67 for the present physical model. When the Lyapunov
exponents shown in Fig. 7 are expressed in the form of



Fig. 6. Closer view of Fig. 5(c) and (d): (a) Ra = 1.72 � 106. Fundamental frequencies f1 and f2 are 531 and 311, respectively; (b) Ra = 1.73 � 106. f1 and f2

are 533 and 312, respectively.

Fig. 7. Variation of the first and second largest Lyapunov exponents for: (a) 0.1 6 Ra 6 1.0 � 107; (b) 4.0 � 105
6 Ra 6 2.0 � 106; (c)

7.0 � 105
6 Ra 6 2.0 � 106. (A1), (A2), (B1), (B2) and (C*) shows the temporal classification of the region of Ra that well explains the characteristics

of the exponents.
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ks the values are the order of 10�3 for the above-mentioned
range of Ra and the order of 1 outside this range. Therefore
the Lyapunov exponents within ±0.5 described above can
be numerically determined to be zero. A similar discus-
sion can be applied to the fact that k1 = k2 for
Rac0 � 5.0 � 105

6 Ra 6 Rac1. From these results the ther-
mal convection fields can be classified into the following
regions:
ðA1Þ Ra < Rac0 ¼ 5:0� 105; k2 < k1 < 0;

ðA2Þ Rac0 6 Ra < Rac1 ¼ 7:3� 105; k2 ¼ k1 < 0;

ðB1Þ Rac1 6 Ra < Rac2 ¼ 1:27� 106; k2 6 k1 ¼ 0;

ðB2Þ Rac2 6 Ra 6 Rac3 ¼ 1:72� 106; k2 ¼ k1 ¼ 0;

ðC�Þ Ra > Rac3; k1 > k2 P 0:

Considering only the sign of k1, we can divide the thermal
convection fields into: region (A) (�(A1) + (A2)), region
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(B) (�(B1) + (B2)), and region (C*). In region (A) k1 < 0
and this means that the flow field is stable and in steady
state, from the discussion of Section 2.2. This can be ascer-
tained from the fact that region (A) completely corre-
sponds to (S) mentioned above. In region (C*) k1 > 0
and, therefore, we conclude that the fields in (C*) are in
chaotic state (C) from the definition of the largest Lyapu-
nov exponent. So the above-mentioned critical Rayleigh
number Rac3 is determined to be 1.72 � 106. It is worth-
while noting that the critical number cannot be obtained
from the qualitative discussion in Section 4.1. Similarly
the fact that k1 = 0 in region (B) means that the flow fields
in the region are periodic or quasi-periodic, and this ex-
plains well the real nature of thermal convection fields.
However, we cannot divide (B) into the periodic and qua-
si-periodic regimes from the sign of k1 only.

On the other hand, taking k2 into consideration we can
interpret the five regions mentioned above as follows. The
bifurcation from region (A1) to (A2) means that the eigen-
value that has the largest norm changes from a real number
to a complex one, and this alludes to the first Hopf bifur-
cation before k1 goes to zero at Ra = Rac1. Similarly the
second bifurcation occurs when k2 goes to zero, and (B1)
and (B2) completely correspond to the regime (P) and
(QP), respectively. Consequently the thermal convection
fields in this study can be classified quantitatively into the
following regimes by using k1 and k2:

ðAÞ () ðSÞ; ðB1Þ () ðP Þ; ðB2Þ () ðQPÞ;
ðC�Þ () ðCÞ:

Rigorously speaking, the Lyapunov exponents computed
by Eqs. (6) and (7) fluctuate with time around their
time-mean value. The relative width of the error band
of k1 and k2, defined by the peak-to-valley amplitude di-
Fig. 8. Time-variation of the vorticity component of the first Lyapunov
Ra = 5.01 � 105; (c) Ra = 5.62 � 105. The component begins to fluctuate at R
vided by its time-mean value, was less than 0.9% in (S)
and the width of k2 was less than 3.0% in (P). For the
case of jkij < 0.5, the maximum and minimum value of
ki was included in ±0.55. For some cases, including those
in the range (C), Eq. (6) or (7) behaves like ki + b/(t � a)
as t increases [20]. In these cases the application of Eqs.
(6) and (7) to computation of the exponents is not neces-
sarily effective because it takes too much time to evolve
them. In these cases, therefore, k, a and b were deter-
mined by the method of least squares. The fluctuation
of the exponents around the correlated curve is relatively
large when the evolved time is small. However it is known
that such fluctuations make physical sense in statistical
mechanics [29] and go to zero when the evolved time is
sufficiently large [20].
4.3. Hopf bifurcation and tangent vectors

Since the first and second Lyapunov vectors /01 and /02
have physical meaning as the orthogonalized infinitesimal
perturbations included in the system as described in Section
2.2, these perturbations are independently suppressed when
k1 and k2 are negative. Such perturbations independently
become obvious over the critical points when k1 and k2

go to zero, i.e., the first and second Hopf bifurcations,
respectively. Therefore the fluctuation of the normalized
Lyapunov vector before the critical points can explain the
fluctuation of physical quantities over the points. Hereafter
the term ‘‘Lyapunov vector” is referred to as the normal-
ized vector.

As mentioned above, the largest eigenvalue of the Jaco-
bian (4) changes from a real number to a complex one and,
therefore, the first Lyapunov vector begins to fluctuate
over the critical point at Ra = Rac0. Fig. 8 shows such a
vector at the reference point (p3) and (p4): (a) Ra = 4.61 � 105; (b)
ac0 = 5.0 � 105.



Fig. 9. Power spectrums of the vorticity component of the first Lyapunov
vector at Ra = 7.19 � 105: (a) (p2); (b) (p3); (c) (p4); (d) (p5). These
spectrums have peaks at the same frequency of 239 and its harmonics.
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transition of the Lyapunov vector at the reference points
(p3) and (p4), described in Table 3.

Fig. 9 shows the power spectrums of the vorticity com-
ponent of the first Lyapunov vector at the reference points
(p2)–(p5) at Ra = 7.19 � 105 < Rac1 below the critical
point of the first Hopf bifurcation. These power spectrums
have peaks at the same frequency of 239, and well explain
Fig. 10. Comparison of the time-fluctuation of f at Rac1 = 7.3 � 105 with fs þ
denote the vorticity, fs the steady solution, f1 the vorticity component of the
the fundamental frequency f1 of vorticity (=242) at Ra =
Rac1. In these spectrums the harmonics of 239 are also
detected and this is caused by the false fluctuation
described in Section 4.1. Since the Jacobian (4) is fixed in
steady state, the corresponding fluctuation of the first
Lyapunov vector should be sinusoidal. But the false fluctu-
ation makes the Jacobian (4) periodic and false harmonics
are detected in the power spectrums of the Lyapunov vec-
tor. However the fluctuation energy of the harmonics is rel-
atively small and the overall fluctuation can be regarded as
a sinusoidal one. As mentioned above, the false fluctuation,
as well as the false harmonics, can be confined by decreas-
ing CC.

Next, the fluctuation of vorticity at Ra = Rac1 is com-
pared with that of a superpositioned form fs þ ef01 at
Ra = 7.19 � 105 < Rac1, where we denote the steady solu-
tion by fs, the vorticity component of the first Lyapunov
vector by f1, and a proportionality constant by e. The
results are shown in Fig. 10. If we ignore the time-mean
and phase shift of the vorticity at each reference point,
which is caused by the difference in Ra, then both fluctua-
tions are almost the same. In Fig. 10 the amplitude e can-
not be theoretically obtained because weak nonlinear
analyses were not performed in this study. However e
was numerically found to be e � 51 for Ra = 7.19 � 105.
Such observation is found in Vest and Arpaci [2].

Similarly the fluctuation of vorticity at Ra = 1.33 � 106,
which is over the critical number Rac2 where the second
Hopf bifurcation occurs, was compared with the fluctua-
tion of vorticity and the vorticity component of the second
Lyapunov vector at Ra = 1.26 � 106 < Rac2. The power
spectrums of these fluctuations are shown in Figs. 11–13.
It should be noted that the power spectrum of vorticity
at Ra = 1.33 � 106, slightly over Rac2, (Fig. 13) is remark-
ef01 at Ra = 7.19 � 105 < Rac1: (a) (p2); (b) (p3); (c) (p4); (d) (p5). Let f
first Lyapunov vector, e a proportionality constant of 51.



Fig. 12. Power spectrums of the vorticity component of the second
Lyapunov vector at Ra = 1.26 � 106 for some reference points: (a) (p2);
(b) (p3); (c) (p4); (d) (p5).

Fig. 13. Power spectrums of the vorticity at Ra = 1.33 � 106 for some
reference points: (a) (p2); (b) (p3); (c) (p4); (d) (p5).

Fig. 11. Power spectrums of the vorticity at Ra = 1.26 � 106 for some
reference points: (a) (p2); (b) (p3); (c) (p4); (d) (p5).
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ably similar to that of the vorticity component of the sec-
ond Lyapunov vector at Ra = 1.26 � 106 (Fig. 12). For ref-
erence point (p3) the precise explanation of superposition
of fundamental frequencies f1 and f2 are shown in
Fig. 14. The figure shows that both of the peak frequencies
of vorticity and the vorticity component of the second
Lyapunov vector at Ra = 1.26 � 106 well explain the fre-
quencies of vorticity at Ra = 1.33 � 106. These figures
shows that the fluctuation of vorticity at Ra = 1.33 �
106 > Rac2 may be well explained by the fluctuation of vor-
ticity and the vorticity component of the second Lyapunov
vector at 1.26 � 106 < Rac2 for each point. This is ascer-
tained in Fig. 15. This figure compares the power spec-
trums of vorticity at Ra = 1.33 � 106 (Fig. 13) with that
of a superpositioned form jcfj2 þ e2

2jcf02
j2, where cf is the

complex form of the Fourier coefficient of vorticity at
Ra = 1.26 � 106 (Fig. 11), cf02

is that of the vorticity compo-
nent of the second Lyapunov vector at the same Ra

(Fig. 12), and e2 is a proportionality constant of 0.45. As
shown in Figs. 11, 12 and 14, the major frequency of vor-
ticity differs from that of the vorticity component of the
second Lyapunov vector at Ra = 1.26 � 106 and, therefore,
the contribution of the product cf � cf02

to the power spec-
trum can be ignored and is neglected in Fig. 15.
Fig. 15(a)–(d) show that major vibration components over
�60 dB at Ra = 1.33 � 106 > Rac2 (except the direct cur-
rent component) are quantitatively explained by the fluctu-
ation of vorticity superpositioned on the fluctuation of the
vorticity component of the second Lyapunov vector at
Ra = 1.26 � 106 < Rac2. From these results we can con-
clude that the fluctuation of a physical quantity and its
component of the second Lyapunov vector slightly under
the critical point Rac2 at which the second Hopf bifurcation
occurs well explain the fluctuation of the physical quantity
just over the critical point.



Fig. 14. Closer view of the power spectrums at the point (p3) (Figs. 11(b), 12(b) and 13(b)): (a) vorticity at Ra = 1.26 � 106 (f1 = 425); (b) vorticity
component of the second Lyapunov vector at Ra = 1.26 � 106 (f1 = 425, f2 = 397); (c) vorticity at Ra = 1.33 � 106 (f1 = 438, f2 = 410).
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5. Conclusions

In this study we have proposed an accurate and simple
method to evaluate the Lyapunov spectrum. The method is
suitable for any discretization method that finally expresses
a governing equation system in the form of an ordinary dif-
ferential equation system. The method was applied to evalu-
ate the first and second largest Lyapunov exponents for the
natural convection in a rectangular cavity with heated and
cooled side walls. The main results are as follows:

(1) The largest and second largest Lyapunov exponents
can be evaluated using the proposed method without
any parameters that affect the exponents. The method
just requires several times the amount of computa-
tional time and storage than the conventional thermal
convection fields and is useful for many applications.
(2) The second largest Lyapunov exponent makes it
possible to classify quantitatively thermal convec-
tion fields into five regimes against the Rayleigh
number and to clarify the transition route from
steady state to chaos by identifying the first and
second Hopf bifurcations. These analyses cannot
be done without the exponent. The exponent, as
well as the largest Lyapunov exponent, provides a
unified measure to analyze the change of flow
regimes.

(3) The fluctuation of thermal convection fields slightly
over the critical Rayleigh number at which Hopf
bifurcation occurs can be explained quantitatively
from the corresponding physical quantity and its
component of normalized Lyapunov vector, associ-
ated with the computation of the Lyapunov expo-
nents, slightly under the critical point.



Fig. 15. Comparison of the power spectrums of vorticity at Ra = 1.33 � 106 (black solid line) with jcfj2 þ e2
2jcf02
j2 (red solid line) at some reference points,

where cf is the complex form of the Fourier coefficient of vorticity at Ra = 1.26 � 106, cf02
is that of the vorticity component of the second Lyapunov vector

at the same Ra, and e2 is a proportionality constant of 0.45: (a) (p2); (b) (p3); (c) (p4); (d) (p5). (For interpretation of references in color, the reader is
referred to the web version of this article.)
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The relationships between chaotic and turbulent flows
are important though it is not discussed in this study. If
we consider ‘‘turbulence” as the complex flow regime where
the flow has self-similar vortex structures and large discrep-
ancy between the spatial scales of time-averaged kinetic
energy input and output (dissipation), the chaotic flow of
the present study (Ra < 107) has far smaller chaotic degrees
of freedom and does not correspond to such turbulent flow.
However, the correspondence may not be independent of
the quantitative definition of turbulent flow. Various indi-
cators of chaotic dynamics, such as Lyapunov exponents,
can contribute to the definition. Moreover, how the three
dimensionality of chaotic (turbulent) flow or discretization
methods of basic equations affect the above-mentioned
chaotic characteristics remains an unsettled problem. It is
an issue for the future.
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